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Predicting the metabolically labile atom positions in small organic molecules (i.e. “sites of 
metabolism”, “SoMs”) is central to the development of safe and efficacious bioactive compounds 
such as drugs and agrochemicals.[1] State-of-the-art SoM predictors use physicochemical descriptors 
and/or atom-centred fingerprints in combination with conventional machine learning algorithms such 
as random forest and/or multilayer perceptrons to rank the atoms of any given small organic 
molecule according to their metabolic liability.[2] Publicly available labelled data on xenobiotic 
metabolism is notoriously scarce.[1] Non-proprietary data sets are mostly confined to a limited set of 
drug-like compounds loosely bound by Lipinski’s rule of five.[4,5] The covered chemical space is too 
narrow to draw meaningful conclusions concerning the applicability of existing SoM predictors to 
structurally more diverse compounds such as pesticides. Moreover, the lack of robust uncertainty 
quantification of the model’s predictions hampers their trustworthiness and acceptance by 
experimental chemists. To address these challenges, we propose a Graph Neural Network (GNN)-
based SoM predictor with epistemic and aleatoric uncertainty quantification. This model, when 
compared to the established FAME 3 model[2], demonstrates similar performance in terms of 
accuracy and top-2 success rate. What sets this model apart is its ability to provide an atom-based 
measure of predictive uncertainty. Specifically, it distinguishes between two types of uncertainty: 
aleatoric uncertainty, which identifies local chemical environments associated with noisy SoM 
annotation, and epistemic uncertainty, which highlights unfamiliar chemical structures. We hope that 
this nuanced analysis will aid experimental chemists in determining when to trust the predictions of 
SoM models and, ultimately, enhance the acceptance and utility of such tools. 
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